-A A +A
Type: 
Journal
Description: 
The optimization of the electronic properties of molecular materials based on optically or electrically active organic building blocks requires a fine‐tuning of their self‐assembly properties at surfaces. Such a fine‐tuning can be obtained on a scale up to 10 nm by mastering principles of supramolecular chemistry, i.e., by using suitably designed molecules interacting via pre‐programmed noncovalent forces. The control and fine‐tuning on a greater length scale is more difficult and challenging. This Research News highlights recent results we obtained on a new class of macromolecules that possess a very rigid backbone and side chains that point away from this backbone. Each side chain contains an organic semiconducting moiety, whose position and electronic interaction with neighboring moieties are dictated by the central macromolecular scaffold. A combined experimental and theoretical approach has made it …
Publisher: 
WILEY‐VCH Verlag
Publication date: 
23 Feb 2010
Authors: 

Vincenzo Palermo, Erik Schwartz, Chris E Finlayson, Andrea Liscio, Matthijs BJ Otten, Sara Trapani, Klaus Müllen, David Beljonne, Richard H Friend, Roeland JM Nolte, Alan E Rowan, Paolo Samorì

Biblio References: 
Volume: 22 Issue: 8 Pages: E81-E88
Origin: 
Advanced Materials