Type:
Journal
Description:
We report on a wearable, human tissue-equivalent, real-time dosimeter designed to quantitatively monitor radiation absorbed by patients during cancer treatments. The fully organic device has been characterized under actual clinical conditions using a high-energy proton beam and an anthropomorphic phantom, with the aim to simulate a prostate cancer proton therapy treatment. We achieved a full control over the dosimeter operation, and we verified its linear response with the received dose. We demonstrate that, by a proper functionalization of the polysiloxane-based scintillator, it is possible to target the effective detection of different kinds of ionizing radiation. Specifically, besides protons, we develop a device able to detect thermal neutrons, targeting its use during Boron Neutron Capture Therapy. This work demonstrates how organic indirect detectors can be considered a universal radiation detecting platform …
Publisher:
American Association for the Advancement of Science
Publication date:
25 Apr 2025
Biblio References:
Volume: 11 Issue: 17 Pages: eadt7633
Origin:
Science Advances