Type:
Journal
Description:
The tunable properties of nematic liquid crystals (NLC) are here exploited in a peculiar leaky waveguide with artificial magnetic conductors as the lateral walls, a bottom metal ground plane, and a homogenized metasurface on top to obtain dynamic beamsteering at a fixed terahertz frequency. The waveguide consists of an NLC cell sandwiched between two dielectric layers. The proposed antenna system works on its transverse-magnetic leaky mode and is capable of radiating a beam that scans either by frequency or by changing the bias voltage applied across the NLC cell. The design parameters are optimized through a rigorous modal analysis of the structure, and the radiation performance is validated through full-wave simulations. The results are promising for the realization of next-generation tunable terahertz leaky-wave antennas.
Publisher:
MDPI
Publication date:
19 Nov 2022
Biblio References:
Volume: 12 Issue: 22 Pages: 11770
Origin:
Applied Sciences